Innovative spillways

PK-weirs . Franska exempel

10/04/2018

Speaker : A. Chapuis,

Member of CFBR - French Committee on Dams and Reservoirs Member of CFBR technical mirror group of ICOLD Committee C "Hydraulic of Dams 2019-2022"

Co-writer : L.Deroo

CEO

Chairman of ICOLD Technical Committee on "Emerging Challenges and Solutions" (2013-2018)

ISL Engineering office, FRANCE,

www.isl.fr

Génération ERASMUS

10 years ago...

Infrastructures / hydraulic works

Sea and Shore

Scientific calculations

Sommaire

Innovative spillways : Why and where we stand? Innovative spillways – How ?

Among the solutions : PK-Weir

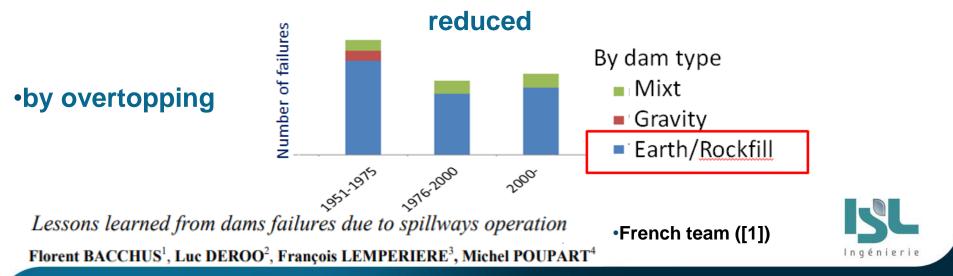
Infrastructures / hydraulic works Design / Construction / Final in situ result

French guideline

m

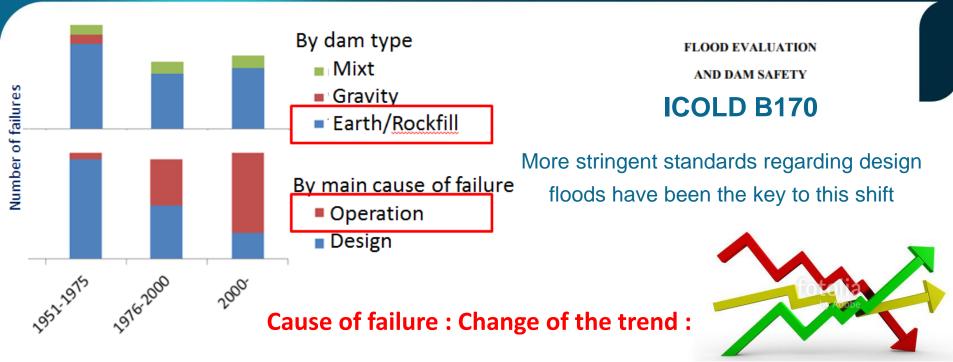
Ice Load / floating issue

Innovative spillways : Why and where we stand?


ICOLD TECHNICAL COMMITTEES database

Spillways are the #1 issue for dam safety

Last 25 years : 1990 – 2015 : 1,000 fatalities from 24 dam accidents


70% of which related to floods and spillways

Figures improved a lot during the twentieth century, but could still be

SWEDISH NATIONAL COMMITTEE SwedCOLD, annual meeting – 10/04/2018 - Stockholm

Innovative spillways : Why and where we stand?

Past failures : often due to (1) an undersized Safety Design Flood ; (2 – lesser extend) to structural and hydraulic lack of design

Recent failures : The operation of spillways and especially the operation of gated spillways is now the first cause of dam failures.

Innovative spillways – How ?

Back-analysis of these past accidents - performed by a French team ([1]) and focused on French large dams.

5 tricks to increase spillway safety

1- Concrete dams: improve safety during unexpected overtopping

Internal workshop on overflowing of dams and dikes - > 12/2017 – Overtopping certainly possible but still need engineering improvement to be justify in dam design

2- Gated spillways: develop standards for PLC (control-command) Major cause for inappropriate manoeuvring of spillway gates; no technical standard on how to design, test and maintain these key components for dams
Upstream operational safety / downstream operational safety – Compromise
3- Flood operation rules: an assessment in terms of time factor Balance between the flood kinetics and the timeframe required for the gate operation sequence, including the handling of operation incidents.
4- "Safe & sound" design incorporating at least 2 safety barriers

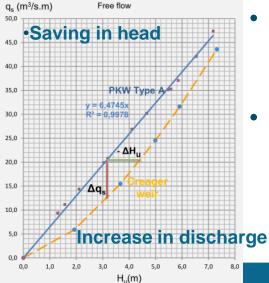
5- Warning & evacuation: updated methods using mobile phones

Ingénieri

Innovative spillways – How ?

Among the solutions: innovative spillways

- That would not fail to operate as expected during the flood event
 whatever the conditions for energy, access and floods
- That would not unexpectedly open causing harm to people in the riverbed downstream
- That provide generous safety margins to handle hydrological uncertainties between MWL and dam crest

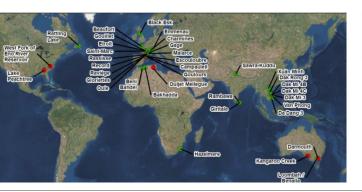


Among the solutions : PK-Weir - Design

Pkweirs (invented by F. Lempérière): a new standard, that proves universal, well world-spread by EDF.

PKW is much more efficient than an ogee crested weir of same width, especially for low heads : 2 to 5 times greater than an ogee crest using the same width – large impact on flood routing
 variation of the traditional labyrinth weirs with ramped floors ; + 15% of discharge

- can replace gates in various circumstances avoid safety issues associated to them
- strong hydrological safety : a flood much higher than the design flood can be spilled with a limited upstream water elevation archetypal feature of "safe design barrier agenierie

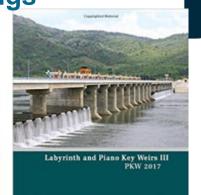

SWEDISH NATIONAL COMMITTEE SwedCOLD, annual meeting – 10/04/2018 - Stockholm

Among the solutions : PK-Weir

ICOLD – TECHNICAL COMMITTEE ON HYDRAULICS FOR DAMS CIGB – COMITÉ TECHNIQUE SUR L'HYDRAULIQUE DES BARRAGES

ICOLD B172

TECHNICAL ADVANCEMENTS IN SPILLWAY DESIGN Progress and Innovations from 1985 to 2015



•http://www.pk-weirs.ulg.ac.be

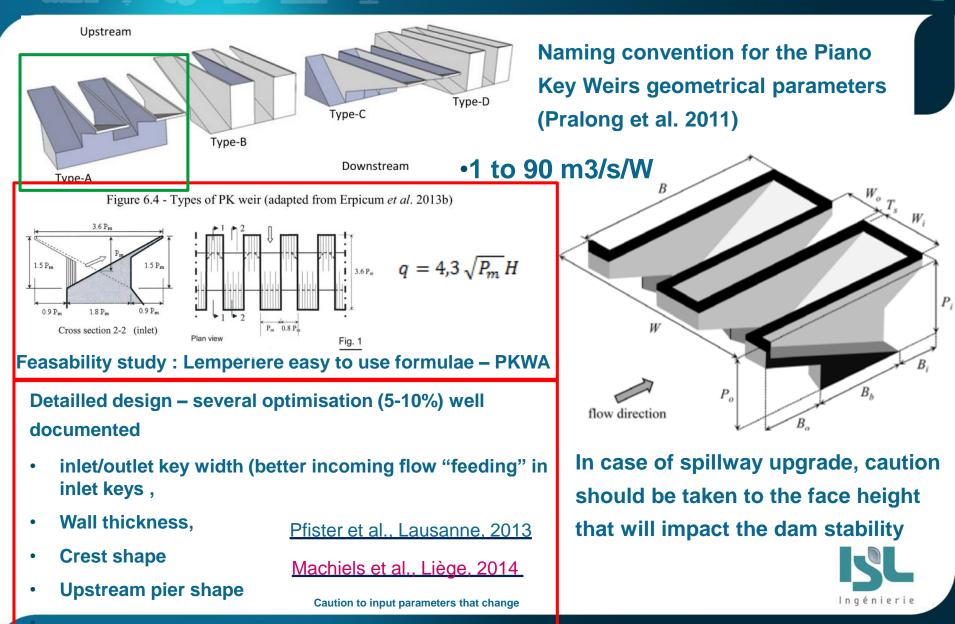
Labyrinth and Piano Key Weirs II PKW 2013 prod. 1 lagin in flow in finite Lin Control Lin Science Editors

100000.00 10000.00 1000.00 1000.00 1000.00 1000.00 1000.00 100.00 100.00 100.00 1000

•World Register of PKW (~30 – ISL : 5)

Estimation of A-type Piano Key weir rating curve

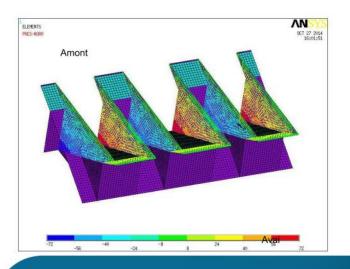
Michael Pfister & Anton J. Schleiss Laboratory of Hydraulic Constructions (LCH), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 18, CH - 1015 Lausanne, Switzerland **2 main technical**


Experimental parametric study and design of Piano Key Weirs

Olivier Machiels Project Engineer^a, Michel Pirotton (IAHR Member), Professor^b, **Dapers** Archambeau Pierre Research Associate^c, Benjamin Dewals (IAHR Member), Assistant Professor^d & Sébastien Erpicum (IAHR Member), Research Associate^e

0.00

Among the solutions : PK-Weir - Design


Among the solutions : PK-Weir - Construction
 Structural design :

-> No more sensitive than Labyrinth : vertical walls height is reduced as well as the volume of reinforcing steel required in concrete (re-inforcement : 90-110 kg/m3 ; formwork : 100-130 m²/W 1.3 à 1.5 m²/m³)

-> Thin structure (less than labyrinth) but hyperstatic and stiff

-> Outlet key on banks in order to limit loads on channel

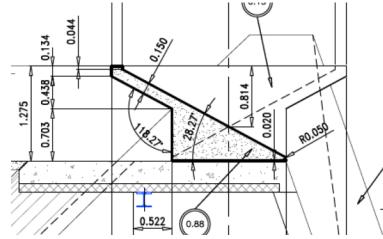
sidewalls

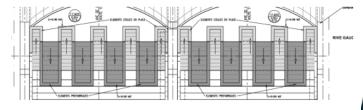
Attention to controling sizing parameters :

- Thermal load (Eurocode thermal load)
- Ice loading (when applicable detailled later)
- Impact load (Eurocode $F_{max} = V\sqrt{KM}$:)
- Particular attention to seismic loading (cres

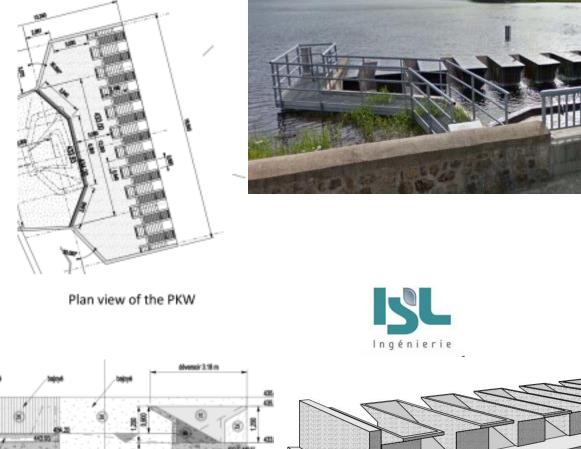
Among the solutions : PK-Weir - Construction

-> Well adapted to pre-cast element (full key, half key, only walls)


- project
 constraints :
 dissipation,
 - access,
 - installation,
 - operation,
 - floods...


-> Can be implemented on each type of dam

PKW discharge capacity at MWL (m3/s):	76
W (m):	14.99


Plan view of the PKW

SWEDISH NATIONAL COMMITTEE SwedCOLD, annual meeting - 10/04/2018 - Stockholm

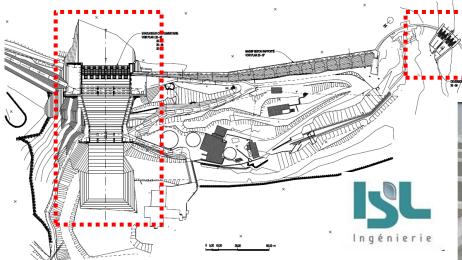
-> Can be implemented on each type of dam

VUE EN PLAN PROJET

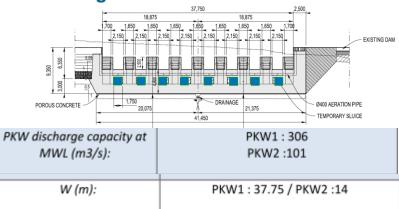
Gouillet

18.2

19.14


PKW discharge capacity

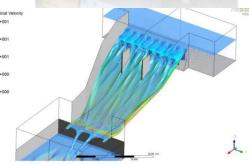
at MWL (m3/s):


W (m):

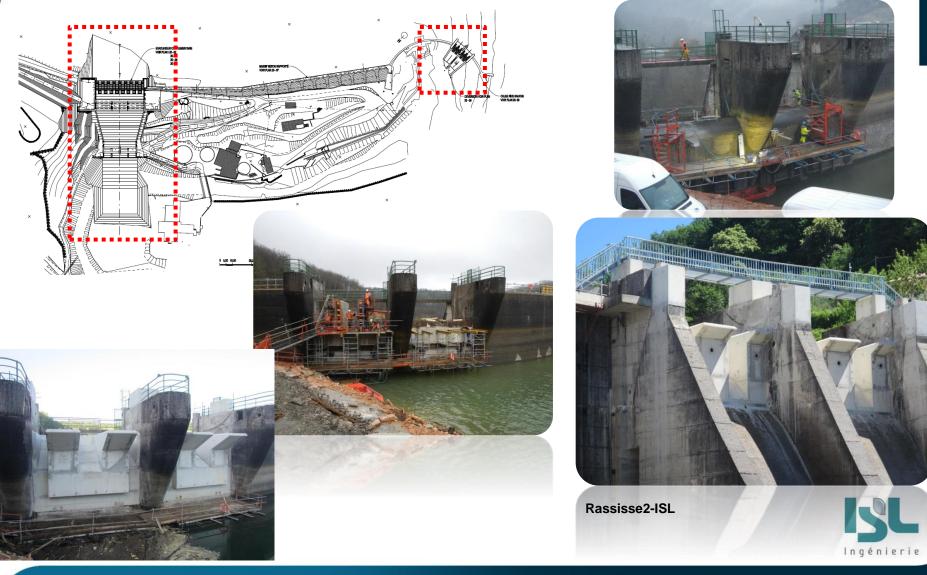
Cross-section view of the PKW

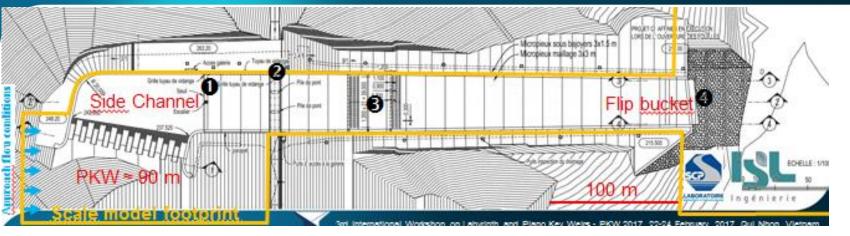
-> Can be implemented on each type of dam

Opportunities to include temporary sluice under the keys for work flood management on existing dam



Mise en service des pertuis provisoires (photo du 04/03/2015)

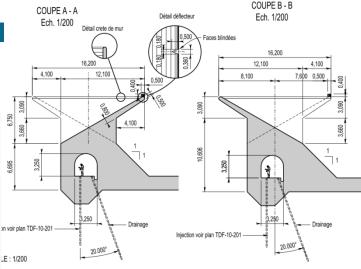

Rassisse1-ISL



SWEDISH NATIONAL COMMITTEE SwedCOLD, annual meeting - 10/04/2018 - Stockholm

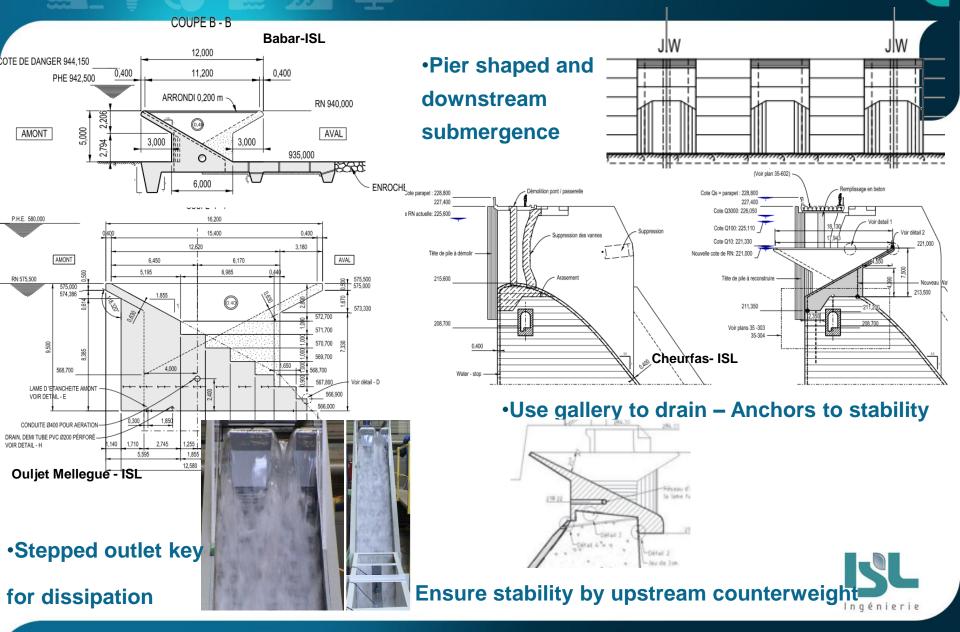
Among the solutions : PK-Weir - Résults

-> Can be implemented on each type of dam



•4500 m3/s – 50 m3/s/ml

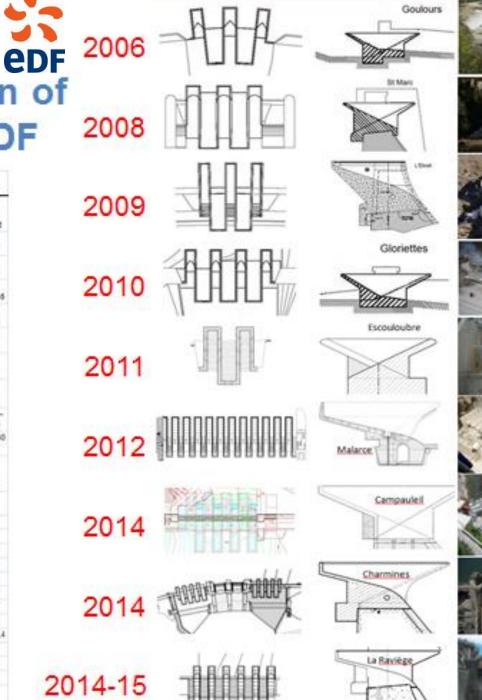
•W= 90.5 m



SCOTLAND

Ramdane-ISL

Among the solutions : PK-Weir - Résults



SWEDISH NATIONAL COMMITTEE SwedCOLD, annual meeting – 10/04/2018 - Stockholm

Spillways Evacuateur de crue

Plan and cross-section of 9 first PKW built by EDF

÷	Geoleura	St Marc	Erolt	Goriettes	Escoul	Malarce	Campaulei	Charmines	Raviège	Gage
Den type	Conchille gravity	Concrete gravity	Concrete gravity	Sim archid	Concrete gravity	Concrete gravity	Concrete gravity	Cc gravity and eartht	Conchere gravity	Sim arched
H on ground level (m)	20	40	25	43	13.4	28.4	15.8	17	37	39.6
Dam's date of construction	1946	1932	1933	1951	1971	1968	1939	1948	1958	1954
PKW's date of construction	3006	2005	2009	2010	2011	2012	2014	2015	2014-15	3015-16
Pick/ localization	Bank	Dam covist	Dan crest	Bank	Bank	Dan creat	Dam crest	Dam crest	Dam crest	Bank
Dam design flowed (m ³ /t)	162	660	500	150	13	4600	192	653	1700	675
Q PKW # MWL(m ³ h)	61	138	\$2	90	13	570-	120	300	300	455
Q ₂₀₀ #14 = 1 m (m ³ /µ/m)	,	6.5		63	~ 4(2)	9.4	8.3		1.5	11
Total project cost (kil)	400	1500	1500	1500	615	4500	2900	6500	4000 5000	15000 20000
PKW Cest (M)	300	800	400	400	230	\$00	450	1800	1000-12 00	900-130 0
Head on PKW at MWL (3) (m)	0.95	1.35	0.95	0.8	0.65	15	0.9	1	1.4	1.75
(month)	3		6	5(1)	6	12	6	6	6	
B (m)	9.3	12.7	12.2	10	5.1	13.46	13.1	13.24	13.24	13
8, (m)	3.35	4	3.2	3.5	1.2	6.63	4.9	3.97	4	4
8. (m)	1.5	.4	2	2.6	1.2	2.03	2.8	4.41	3.33	3
0,000	4.4	4.7	7	3.6	2.7	4.5	3.5	4.57	5.91	6
P (m)	3.1	4.2	5.3	3	1.8	4.4	5.35	4.38	4.67	6
W(m)	12	18	18.7	18.5	4.5	42.5	16.55	2*23	25.8	26.6
W. (m)	2.7	3.1	5	23-25	1.3.	. 5	1.55	2.4	2.4	1.6
W. (m)	15-18	2.2	1.5	1.5	0.9	1.58	1.4	1.6	1.65	1.3
T. (m)	0.2	0.25	0.35	5	0.3	0.2-0.4	0.35	0.35	0.25-0.4	0.25-0.4
L (m)	59	77	78	85.5	22	355	115	2*120	177	208
P _{ar} (m)	0	0	0.5	Ó	0	1.65	0.7	1	1	0.8
B., (m)	1	1.5	1	15	1	1.5	1	1.15	2	2
Nois ben	Nate	trant	triane	reand	triang.	triane	triane	round	Niate.	tiane

French Guidelines

Check flood

•Dams are classified into 4 ranks A B C D depending on V at NWL and total Height $H^2\sqrt{V}$

•No PAR/LOSS classification as dams in France are in sensitive areas

Safety design flood

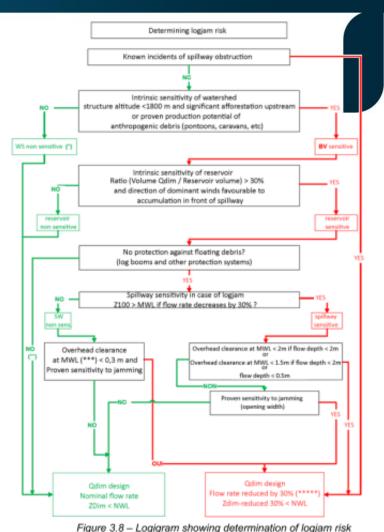
	Rigid dams	Loose material dams
A	1000 to 3000	10,000
В	1000	3000
С	300	1000
D with V \geq 50,000 m ³	100	300

Dam class	Annual exceedance probability
A ¹⁰	¹⁰⁻⁵ α*Q ₁₀₀₀₀
В	3.10-5
С	10 ⁻⁴
D with V \geq 50,000 m^3	10 ⁻³

Table 4.6 – Return periods for floods in exceptional situations

- Several hydrological approach : rainfall-runoff transformation
 processes (GR4; Gradex;...)
- Determination of the occurrence of safety check floods using the incremental damages method





French Guidelines - Floatings

Jamming is assessed taken into account :

- the intrinsic sensitivity of the watershed (to the production of floating debris – Altitude, land cover,...);
- the intrinsic sensitivity of the reservoir (reservoir configuration, use wind direction, Vflood/Vreservoir);
- spillway sensitivity (shape, protection systems);
- spillway design (span, overhead clearance, water height etc).

Ingénierie

French Guidelines - Floatings

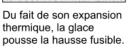
Positive PKW behavior against floating debris blockage risk

Well studied by

- •@Laugier,EDF
- •For Rehabilitation projects, general comments :
- ⇒Generally other existing spillways, often gated one with high specific flows Attracts debris
- ⇒ Gates generally operated first for medium floods (often until 100 years Return period)
- ⇒ As freeflow spillways, <u>debris will pass when</u> <u>water head increases</u>

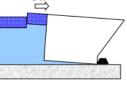
French Guidelines – Ice load

•Ice thickness estimate : ROSA 2000


Often 30 cm, even more

- Pressure according to DIN : 150 kg/m²
- BUT :
 - It is assessed if ice can occur with NWL / flood (normally not management guideline in case of maintenance...)

-6


•The deformability (bending of the sidewall) of the structure will limit the load

Si cet effort devient suffisamment fort, la hausse commence à pivoter autour de ces butées. Auquel cas, la couche de glace fléchit.

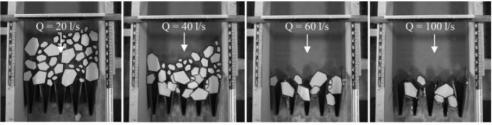
 $\xrightarrow{F_x}$

Pour un angle de rotation donné (0,5° a 1,0°); la couche de glace casse et la hausse revient en place.

en 2001.

Hausses fusibles sur le barrage de Khorobrovksaya

SWEDISH NATIONAL COMMITTEE SwedCOLD, annual meeting - 10/04/2018 - Stockholm


Ingénierie

French Guidelines – Ice load

A comparison of side weirs and labyrinth weirs at Ilmenau river

M. Gebhardt, J. Merkel, F. Belzner & C. Thorenz Federal Waterways Engineering and Research Institute (BAW), Germany

5.3 Accumulation of ice

Ice is an issue in cold climates. On one hand the pressure causes an additional load (Falvey, 2003), on the other hand it is also problematic if floating ice gets stuck in the keys and reduces the discharge capacity. In ongoing investigations a trapezoidal and a rectangular labyrinth weir are also compared with regard to the accumulation of ice at the weir in dependence of the discharge, ice concentrations and ice shapes (Herbst, 2016). First observations indicate that the increase of the upstream water level is small and floating ice passes the weir with increasing discharge. Only few ice floes remained on the crest of the weir (Fig. 9).

Same behaviour than for floatings debris

ISL business card

Identity

- Establishing : 1986 30 years
- 100% employee-owned
- 45% International activity mainly in Africa
- 10% growth
- 100 full-time staff members
- 6 international subsidiaries
 - 3 sisters companies

// Turbines, Auxiliary Equipment

// Maritime and naval

Filialos et représentations

Projets

Thanks for Your Attention

SWEDISH NATIONAL COMMITTEE SwedCOLD, annual meeting – 10/04/2018 - Stockholm